我们感知和传感的时候到底是以视觉为主还是需要别的感知?包括激光雷达,大家都知道马斯克很不喜欢激光雷达,认为整个车应该是完全视觉为主。刚才讲到五个层次,感知是机器的优势,可以拿到人看不到的东西,摄像头、激光雷达、毫米波、超声波雷达是有不同的优势,不同的天气、不同的环境,可以作为互补,一定要比人类驾驶的安全性提高一个数量级,如果我们能够得到的信息、获取的信息,机器和人类是一样的,很难比人更安全,有的地方好有的地方差,所以在获取信息方面,机器一定要具有这个优势,应用不同的传感和激光雷达就是其中的一个例子。
大家看到的视频是五年前,我们是用十个摄像头实现无人驾驶,其中也有很多很复杂的算法,但安全性和冗余度肯定是不够的。图中是用三维激光雷达,直接在三维绘制,可以用深度的信息,当然也可以看到不同的车、人、非机动车,包括一些静态的信息都可以感知到。其实这些就是提供了视觉方面没有的,肯定对整个安全性是有好处的。
大家可能会说激光雷达太贵了,刚开始是比较贵,现在用到Hybrid Solid State已经降到几百美金,不仅仅是L4可以使用激光雷达,新的L2都可以使用激光雷达,所以不是价格的问题,更多的是怎样利用这个信息增加我们泛化的能力,提高解决Corner Case的能力。
到底是单车还是车路协同?刚开始做无人驾驶,包括Google、百度都是先从单车来做,做到后面一定会遇到瓶颈,就是一定还会不断进展。很简单,不管是感知还是决策,缺少一些信息,包括视线的问题、距离的问题,当然也包括一些得不到的全局信息,整个城市的信息都相当重要。比如胡乱加塞、交通信息不清楚、视线不良或者有些突发事件,就算再智能也无法感知和决策。
车路协同也有几个层次:感知方面的协同、决策方面的协同,最后是系统范围整个城市车路灯和基础设施的协同。现在我们看的更多的还是第一和第二层次,单车智能和车路协同是二者都需要的,所以协同智能很重要。清华大学的克强院士是最早提出的,车路协同、网联汽车,整体上也是中国的一个优势和路径。看起来单车智能是有L0到L5,路也需要不同的等级,就是C0到C5,C以上就完全是无人,这个时候即使车智能很少,路也可以实现这种能力。
我们可以看到车路协同的优势,比如一个救护车过来,只有车端智能的话,V2X的信息关掉的话你是不知道的,看到车以后马上就需要急刹车,有了V2X信息就会知道路端有车过来,很早就可以刹车或者变道。
全球都在积极部署V2X,美国也好、欧洲也好,但中国在这方面是比较领先的,不管是政策的制定还是整个实验部署,现在好几个城市特别是北京亦庄有高级别的自动驾驶示范区,车路协同方面全球都是走在前面。
我们提出道路怎样分级,去年和百度一起写了一个白皮书,比较详细地把道路做了分级,其中有道路本身基础设施的能力,包括地图、协同感知、网络通讯、协同决策,是不是足够安全的体系,我们有一个白皮书专门有这方面的思考。
无人驾驶、车路协同方面,我们也是和阿波罗、百度合作,后来也有一个ApolloAir计划,其中有不同的子企慕,我们尽量把路侧的感知做到极限。比如我的车没有什么智能,就是最简单的L2级别,但路端的整个能力需要最大化,就是X轴和Y轴最后一块协同。我们做了很多理论方面的模型,但更多的是做了很多测试,部署了很多车在亦庄,不过有些也是在长沙和别的地方。
去年6月,我们发布一份白皮书,其中比较系统地谈到车路协同以及各种不同场景,包括对安全性的提高。我们也有发布全球第一个车路协同的数据集,叫做DAIR V2X,也是基于全场景同步的。现在阿波罗是开源的,我们的数据集也是开源的,目前因为比较敏感,我们只是给国内的合作伙伴开源,没有在国际开源,欢迎在座的各位使用。