我们现在的车长OEM加上Tier正在从事自动驾驶和无人驾驶,很多新的Player也在进入这个市场,包括出行服务、新的势力、物流公司和高科技公司,所以五到十年以后,整个商业格局会和现在完全不一样。

将来这个领域会有很多技术方面的挑战,也有关键决策的因素。如果从人工智能和软件的角度来看,我认为是人工智能在未来五到十年最有挑战的一个问题,同时也是有边界的,就是很复杂的问题可以分解成为一些可以解决的相对简单的问题,如果碰到无解的话,这个领域也很难做,正好是可以解决但又是很难的问题,就是集很多技术之大成,包括规划、决策、执行,这些领域都需要完美的工作,容错的几率很小。

实现无人驾驶也有一些关键的问题,既有市场的因素也有非市场的因素。我们的论坛是和法学院一起共办的,非市场因素、政策、法规、伦理、隐私以及其它人为因素可能对整个无人驾驶的作用,技术和市场的力量同等重要,今天我主要谈一谈市场因素,特别是技术的可行,包括产业的生态。L4无人驾驶是否可以实现?答案是Yes,实现的路径是以视觉为主还是更多不同的传感器?怎样泛化感知和决策?这些都是技术问题,路线图是通过单车智能还是通过车路协同?渐进式通过ADAS到L4或者L5,生态也是开源Android或者IOS的封闭模式。很多不同领域都在进入这个行业,以后到底谁会赢?现在汽车OEM车厂还是新势力的高科技公司?这些问题不可能都讲,只是大致地讲一讲我的想法。

无人驾驶关键技术分为五个层次:数据层、感知层、认知理解层、决策规划层以及控制抽象层,这里每一层都很重要,就是数据的采集到建立时空三维模型,包括视觉的、激光的或者传感,能够融合形成动态的理解,同时也要建立静态的对道路结构的认知、构图和定位。

感知就是要构建一个环境模型Environmental Model,然后要去做决策规划,同时要把所有数据回到控制层,包括车辆的台、V2X、数据台、仿真台,这些决策和数据又会回到每个层次,所以形成闭环,这个闭环本身基本上是要实时的,同时要做Impeccable完美的决策,容错的几率很低。

有人会问到底用了什么人工智能算法?我也是专门有一个报告是讲不同算法的细节,自动驾驶和无人驾驶可以说用到所有可以想到的AI算法,过去的算法到现在的深度学算法都有用到,包括对数据的压缩、检测目标、数据场景的补全、仿真模拟定位、全景分割和后来的模型压缩。

为什么这些实现起来很困难?深度学也好、机器学也好,整体上是根据目前的数据,遇到新的场景以后必须要有泛化能力,所以就是Corner Case导致事故发生,又不可能测试的时候都包裹,要把第三象限减到最低,但总是会有Corner Case,本身一定要让AI算法可泛化。

上一页2/4 下一页

推荐内容